Hjerne: Funksjoner, struktur

Hjernen er selvfølgelig hoveddelen av det menneskelige sentralnervesystemet.

Forskere tror at det brukes av bare 8%.

Derfor er dens skjulte muligheter uendelige og ikke studert. Det er heller ikke noe forhold mellom talenter og menneskelige evner. Strukturen og funksjonen av hjernen innebærer kontroll over hele vitaliteten av organismen.

Hjernens plassering under beskyttelsen av de sterke beinene i skallen sikrer normal kroppsfunksjon.

struktur

Den menneskelige hjerne er pålidelig beskyttet av sterke bein av skallen, og opptar nesten hele rommet på skallen. Anatomister skiller betinget følgende hjernegrupper: de to halvkule, stammen og hjernen.

En annen divisjon er også tatt. Deler av hjernen er de temporale, frontale lobene og kronen og baksiden av hodet.

Dens struktur består av mer enn hundre milliarder neuroner. Massen er normalt veldig forskjellig, men den når 1800 gram, for kvinner er gjennomsnittet litt lavere.

Hjernen består av grå materiale. Cortex består av samme grå materie, dannet av nesten hele massen av nerveceller som tilhører dette organet.

Under det er skjult hvitt materiale, som består av prosesser av nevroner, som er ledere, blir nerveimpulser overført fra kropp til subkortex for analyse, så vel som kommandoer fra cortex til deler av kroppen.

Hjernens områder for å løpe ligger i cortex, men de er også i det hvite saken. Dype sentre kalles kjernekraft.

Representerer hjernestrukturen, i dypet av sin hule region som består av 4 ventrikler, separert av kanaler, hvor væsken som utfører beskyttelsesfunksjonen sirkulerer. Utenfor har den beskyttelse fra tre skall.

funksjoner

Den menneskelige hjerne er herskeren av hele livet i kroppen fra de minste bevegelsene til en høy funksjon av tenkning.

Hjernedivisjoner og deres funksjoner inkluderer behandling av signaler fra reseptormekanismer. Mange forskere mener at dets funksjoner også inkluderer ansvar for følelser, følelser og minne.

Detaljer bør vurdere hjernens grunnleggende funksjoner, samt det spesifikke ansvaret for sine seksjoner.

bevegelse

All motoraktivitet i kroppen refererer til styringen av den sentrale gyrus, som passerer gjennom fronten av parietalloben. Koordinasjonen av bevegelsene og evnen til å opprettholde balanse er ansvaret for sentrene som befinner seg i det okkipitale området.

I tillegg til occiput er slike sentre rett i hjernen, og dette organet er også ansvarlig for muskelminnet. Derfor fører funksjonsfeil i cerebellum til forstyrrelser i muskuloskeletalsystemet.

følsomhet

Alle sensoriske funksjoner styres av den sentrale gyrusen som går langs baksiden av parietalloben. Her er også senteret for å kontrollere kroppens, dets medlemmers stilling.

Sense organer

Sentre som befinner seg i temporal lobes er ansvarlige for lydhøringen. Visuelle følelser til en person er gitt av sentrene som ligger på baksiden av hodet. Deres arbeid er tydelig vist ved bordet med øyeundersøkelse.

Sammenvinding av viklingene ved krysset mellom de tidsmessige og frontale lobene skjuler sentrene som er ansvarlige for olfaktoriske, gustatoriske og taktile opplevelser.

Talefunksjon

Denne funksjonaliteten kan deles inn i evnen til å produsere tale og evnen til å forstå tale.

Den første funksjonen kalles motor, og den andre er sensorisk. Nettstedene som er ansvarlige for dem er mange og ligger i omløpene til høyre og venstre halvkule.

Refleksfunksjon

Den såkalte avlange avdelingen inkluderer områder som er ansvarlige for viktige prosesser som ikke styres av bevisstheten.

Disse inkluderer sammentrekninger av hjertemusklene, puste, innsnevring og utvidelse av blodkar, beskyttende reflekser, som tåre, nysing og oppkast, samt overvåking av tilstanden til de glatte musklene i de indre organer.

Shell funksjoner

Hjernen har tre skaller.

Strukturen i hjernen er slik at i tillegg til beskyttelse utfører hver av membranene visse funksjoner.

Det myke skallet er designet for å sikre en normal blodtilførsel, en konstant strøm av oksygen for uavbrutt funksjon. Dessuten produserer de minste blodkarene som er relatert til den myke kappen spinalvæske i ventrikkene.

Den araknoide membranen er det området hvor væsken sirkulerer, utfører arbeid som lymfen utfører i resten av kroppen. Det vil si at det gir beskyttelse mot patologiske midler fra å trenge inn i sentralnervesystemet.

Det harde skallet ligger ved siden av beinets skall, sammen med dem sikrer stabiliteten til den grå og hvite medulla, beskytter den mot støt, skift under mekaniske påvirkninger på hodet. Også det harde skallet skiller sine seksjoner.

avdelinger

Hva består hjernen av?

Strukturen og hovedfunksjonene i hjernen utføres av sine forskjellige deler. Fra et synspunkt av anatomien til et organ med fem seksjoner, som ble dannet i prosessen med ontogenese.

Ulike deler av hjernekontrollen og er ansvarlig for funksjonen til individuelle systemer og organer til en person. Hjernen er hovedorganet i menneskekroppen, dets spesifikke avdelinger er ansvarlige for hvordan menneskekroppen fungerer som helhet.

avlang

Denne delen av hjernen er en naturlig del av ryggraden. Den ble dannet først og fremst i prosessen med ontogenese, og det er her at sentrene ligger som er ansvarlige for ubetingede refleksfunksjoner, samt åndedrett, blodsirkulasjon, metabolisme og andre prosesser som ikke styres av bevisstheten.

Posterior hjerne

Hva er den bakre hjernen ansvarlig for?

I dette området er cerebellum, som er en redusert modell av organet. Det er bakhjernen som er ansvarlig for koordinering av bevegelser, evnen til å opprettholde balanse.

Og det er den bakre hjernen som er stedet hvor nerveimpulser overføres gjennom nevronene i hjernen, som kommer både fra ekstremiteter og andre deler av kroppen, og omvendt, det vil si at hele fysisk aktivitet hos en person er kontrollert.

gjennomsnittlig

Denne delen av hjernen er ikke fullt ut forstått. Midbrainen, dens struktur og funksjoner er ikke fullt ut forstått. Det er kjent at sentrene som er ansvarlige for perifert syn, reaksjon på skarpe lyder, finnes her. Det er også kjent at deler av hjernen er plassert her som er ansvarlige for normal funksjon av organene av oppfatning.

mellomliggende

Her er en seksjon kalt thalamus. Gjennom det passerer alle nerveimpulser som sendes av forskjellige deler av kroppen til sentrene i halvkulen. Thalamus rolle er å kontrollere kroppens tilpasning, gir et svar på ytre stimuli, støtter normal sensorisk oppfatning.

I mellomseksjonen er hypothalamus. Denne delen av hjernen stabiliserer det perifere nervesystemet, og styrer også funksjonen til alle indre organer. Her er den on-off organismen.

Det er hypothalamus som regulerer kroppstemperaturen, blodkarrene, sammentrekningen av glatte muskler i indre organer (peristaltikk), og danner også en følelse av sult og mat. Hypothalamus kontrollerer hypofysen. Det vil si at det er ansvarlig for funksjonen av det endokrine systemet, kontrollerer syntesen av hormoner.

Den endelige

Den endelige hjernen er en av de yngste delene av hjernen. Corpus callosum gir kommunikasjon mellom høyre og venstre halvkule. I prosessen med ontogenese ble den dannet av den siste av alle dens bestanddeler, den danner hoveddelen av orgelet.

Områder i den endelige hjernen utfører all den høyere nervøse aktiviteten. Her er det overveldende antall viklinger, det er nært forbundet med subkortexet, gjennom hele organismenes liv blir det kontrollert.

Hjernen, dens struktur og funksjoner er i stor grad uforståelig for forskere.

Mange forskere studerer det, men de er fortsatt langt fra å løse alle mysterier. Egenheten ved denne kroppen er at den rette halvkule styrer arbeidet på venstre side av kroppen, og er også ansvarlig for generelle prosesser i kroppen, og venstre halvkule koordinerer kroppens høyre side og er ansvarlig for talenter, evner, tenkning, følelser og minne.

Enkelte sentre har ikke dobler i motsatt halvkule, ligger i venstre hånd i høyre del og i høyre hånd til venstre.

Til slutt kan vi si at alle prosesser, fra fine motoriske ferdigheter til utholdenhet og muskelstyrke, så vel som følelsesmessig sfære, minne, talenter, tenkning, intelligens, forvaltes av en liten kropp, men med en fortsatt uforståelig og mystisk struktur.

Bokstavelig talt styres hele livet til en person av hodet og dets innhold, derfor er det så viktig å beskytte mot hypotermi og mekanisk skade.

§ 45. Hjernens struktur. Funksjoner av medulla og medulla, broen og cerebellum

Detaljert løsning Seksjon 45 i biologi for 8. klasse studenter, forfattere D.V. Kolesov, R.D. Mash, I.N. Belyaev 2014

Spørsmål i begynnelsen av avsnittet.

Spørsmål 1. Hvorfor er skade på medulla oblongata dødelig?

Medulla oblongata er lik struktur og funksjon til ryggmargen, med hvilken den har en direkte nedre grense. I medulla oblongata er kjernen til vagusnerven, innervering av hjertet og andre indre organer. I kjernen av den grå saken av medulla oblongata er sentrene av beskyttende reflekser - blink og gag, reflekser av hoste og nysing, noen andre. En annen gruppe av sentre er relatert til ernæring og puste - dette er sentrene for innånding og utånding, salivasjon, svelging og separasjon av magesaft. Det utfører svært viktige funksjoner for kroppen, så skaden er dødelig.

Spørsmål 2. Hvordan er nøyaktigheten og glattheten av frivillige bevegelser?

Nøyaktighet og jevnhet av bevegelser er gitt av cerebellum.

Spørsmål i slutten av avsnittet.

Spørsmål 1. Hva er hjernens oppdelinger?

Hjernen består av medulla oblongata, cerebellum, broen, midbrainen, diencephalonen og hjernehalvene.

Spørsmål 2. Hva er medullaens funksjoner?

Oblong hjerne - fortsettelse av ryggmargen. Den inneholder nerve sentre som regulerer vitale funksjoner (respirasjon, fordøyelse, kretsløpssystemet, en rekke defensive reaksjoner).

Spørsmål 3. Hva er de nervøse banene gjennom broen?

Gjennom broen passerer nerveveiene som forbinder forgrunnen og midbrainen med medulla oblongata, cerebellum og ryggmargen. Akustiske stier går gjennom broen.

Spørsmål 4. Hva er midbrains funksjoner?

Midbrainen forbinder forgrunnen med bakre (medulla, pons og cerebellum). Midbrainen inneholder en rekke viktige sensoriske og motoriske sentre, inkludert senter for syn og hørsel.

Spørsmål 5. Hva er hjernens rolle i gjennomføringen av bevegelsene?

Kjernen koordinerer bevegelser, noe som gjør dem presise, glatte og proporsjonale, eliminerer unødvendige bevegelser, opprettholder kroppstilstand og balanse.

Hvordan virker den menneskelige hjerne: avdelinger, struktur, funksjon

Sentralnervesystemet er den delen av kroppen som er ansvarlig for vår oppfatning av den eksterne verden og oss selv. Det regulerer arbeidet i hele kroppen og er faktisk det fysiske underlaget for det vi kaller "jeg". Hovedorganet til dette systemet er hjernen. La oss undersøke hvordan hjerneseksjonene er ordnet.

Funksjoner og struktur av den menneskelige hjerne

Dette organet består hovedsakelig av celler som kalles nevroner. Disse nervene produserer elektriske impulser som gjør at nervesystemet fungerer.

Arbeidet med nevroner er gitt av celler kalt neuroglia - de utgjør nesten halvparten av det totale antall CNS-celler.

Neuroner består i sin tur av en kropp og prosesser av to typer: axoner (transmitterende impuls) og dendriter (mottakelse av impuls). Kroppene av nerveceller danner en vævsmasse, som kalles grå materie, og deres axoner er vevd inn i nervefibrene og er hvite saken.

  1. Solid. Det er en tynn film, den ene siden ved siden av beinets beinvev, og den andre direkte til cortexen.
  2. Soft. Den består av et løs stoff og tett omsluttes overflaten av halvkule, går inn i alle sprekker og spor. Funksjonen er blodtilførselen til orgel.
  3. Spider Web. Ligger mellom første og andre skall og utfører bytte av cerebrospinalvæske (cerebrospinalvæske). Alkohol er en naturlig støtdemper som beskytter hjernen mot skade under bevegelse.

Deretter ser vi nærmere på hvordan menneskelig hjerne fungerer. De morfofunksjonelle egenskapene til hjernen er også delt inn i tre deler. Bunndelen kalles diamant. Når rhomboid-delen begynner, slutter ryggmargen - det passerer inn i medulla og posterior (pons og cerebellum).

Dette etterfølges av midbrainen, som forener de nedre delene med hovednervesenteret - den fremre delen. Sistnevnte inkluderer terminalen (cerebrale hemisfærer) og diencephalon. Hovedfunksjonene i hjernehalvene er organisering av høyere og lavere nervøsitet.

Endelig hjerne

Denne delen har det største volumet (80%) sammenlignet med de andre. Den består av to store halvkugler, corpus callosum som forbinder dem, samt olfaktorisk senter.

De cerebrale hemisfærene, venstre og høyre, er ansvarlige for dannelsen av alle tankeprosesser. Her er det den største konsentrasjonen av nevroner, og de mest komplekse forbindelsene mellom dem blir observert. I dybden av den langsgående sporet, som deler hemisfæren, er en tett konsentrasjon av hvitt materiale - corpus callosum. Den består av komplekse plexuser av nervefibre som sammenfletter ulike deler av nervesystemet.

Inne i den hvite saken er det klynger av nevroner, som kalles de basale ganglia. Nærhet til "transportforbindelsen" i hjernen tillater disse formasjonene å regulere muskeltonen og utføre øyeblikkelige refleksmotorresponser. I tillegg er de basale gangliaene ansvarlige for dannelsen og driften av komplekse automatiske handlinger, delvis repetisjon av hjernens hjernefunksjoner.

Cerebral cortex

Dette lille overflate laget av grått materiale (opptil 4,5 mm) er den yngste formasjonen i sentralnervesystemet. Det er hjernebarken som er ansvarlig for arbeidet med den høyere nervøse aktiviteten til mennesket.

Studier har gitt oss mulighet til å bestemme hvilke områder av cortex som ble dannet i løpet av evolusjonær utvikling relativt nylig, og som fremdeles var tilstede i våre forhistoriske forfedre:

  • neocortex er en ny ytre del av cortex, som er hoveddelen av det;
  • archicortex - en eldre enhet som er ansvarlig for instinktiv adferd og menneskelige følelser;
  • Paleocortex er det eldgamle området som omhandler kontrollen med vegetative funksjoner. I tillegg bidrar det til å opprettholde kroppens indre fysiologiske balanse.

Frontal lober

De største lobes av de store halvkugler som er ansvarlige for komplekse motorfunksjoner. De frivillige bevegelsene er planlagt i hjernens frontale lober, og talesentre ligger også her. Det er i denne delen av cortex at volatilitetskontroll av atferd utføres. I tilfelle skade på frontallober, mister en person makt over sine handlinger, oppfører seg antisosialt og rett og slett utilstrekkelig.

Occipital lobes

Nært knyttet til visuell funksjon, er de ansvarlige for behandling og oppfatning av optisk informasjon. Det vil si at de forvandler hele settet av de lyssignaler som går inn i netthinnen til meningsfulle visuelle bilder.

Parietal lobes

De utfører romlig analyse og behandler de fleste følelser (berøring, smerte, "muskelfølelse"). I tillegg bidrar det til analyse og integrering av ulike opplysninger i strukturerte fragmenter - evnen til å fornemme egen kropp og dets sider, evnen til å lese, lese og skrive.

Temporale lober

I denne delen finner du analyse og behandling av lydinformasjon, noe som sikrer hørselsfunksjonen og lydoppfattelsen. Temporale lober er involvert i å gjenkjenne ansiktene til forskjellige mennesker, samt ansiktsuttrykk og følelser. Her er informasjonen strukturert for permanent lagring, og dermed er langsiktig minne implementert.

I tillegg inneholder de temporale lobes talesentrene, som fører til manglende evne til å oppleve muntlig tale.

Islet deler

Det regnes som ansvarlig for dannelsen av bevissthet i mennesket. I øyeblikk av empati, empati, lytting til musikk og lyden av latter og gråt, er det et aktivt arbeid av holmen. Det behandler også følelser av aversjon mot smuss og ubehagelige lukter, inkludert imaginære stimuli.

Mellomliggende hjerne

Mellomhjernen fungerer som et slags filter for nevrale signaler - det tar all innkommende informasjon og bestemmer hvor den skal gå. Består av nedre og bakre (thalamus og epithalamus). Den endokrine funksjonen blir også realisert i denne delen, dvs. hormonell metabolisme.

Den nedre delen består av hypothalamus. Denne lille tette bunden av nevroner har en enorm innvirkning på hele kroppen. I tillegg til å regulere kroppstemperaturen, regulerer hypothalamus syklusene av søvn og våkenhet. Det frigjør også hormoner som er ansvarlige for sult og tørst. Å være sentrum for nytelse, regulerer hypotalamus seksuell oppførsel.

Det er også direkte relatert til hypofysen og omdanner nervøsitet til endokrin aktivitet. Hypofysenes funksjoner består i sin tur i reguleringen av arbeidet i alle kjertlene i kroppen. Elektriske signaler går fra hypothalamus til hjernens hypofyse, "bestiller" produksjonen av hvilke hormoner som skal startes og hvilke som skal stoppes.

Diencephalon inkluderer også:

  • Thalamus - denne delen utfører funksjonene til et "filter". Her behandles signalene fra de visuelle, hørbare, smak- og taktile reseptorene og distribueres til de aktuelle avdelingene.
  • Epithalamus - produserer hormonet melatonin, som regulerer våknsykluser, deltar i pubertetsprosessen og styrer følelser.

hjernen

Det regulerer primært auditiv og visuell refleksaktivitet (innsnevring av eleven i sterkt lys, snu hodet til en kilde med høy lyd osv.). Etter behandling i thalamus, går informasjonen til midbrainen.

Her behandles det videre og begynner prosessen med oppfatning, dannelsen av en meningsfull lyd og et optisk bilde. I dette avsnittet er øyebevegelsen synkronisert og kikkert sikret.

Midbrainen inkluderer beina og kvadlochromia (to auditive og to visuelle høyder). Innsiden er hulrommet i midtveien, som forener ventriklene.

Medulla oblongata

Dette er en gammel formasjon av nervesystemet. Funksjonene i medulla oblongata er å gi pust og hjerteslag. Hvis du skader dette området, dør personen - oksygen slutter å strømme inn i blodet, som hjertet ikke lenger pumper. I nevronene i denne avdelingen begynner slike beskyttende reflekser som nysing, blinking, hoste og oppkast.

Strukturen av medulla oblongata ligner en langstrakt pære. Innsiden inneholder kjerne av det grå materiale: retikulær formasjon, kjernen til flere kraniale nerver, samt nevrale knuter. Pyramiden av medulla oblongata, som består av pyramidale nerveceller, utfører en ledende funksjon som kombinerer hjernebarken og dorsalområdet.

De viktigste sentrene i medulla oblongata er:

  • regulering av åndedrettsvern
  • blodsirkulasjonsregulering
  • regulering av en rekke funksjoner i fordøyelsessystemet

Posterior hjerne: bro og cerebellum

Strukturen av hindbrainen inkluderer pons og cerebellum. Broens funksjon er svært lik navnet, siden den hovedsakelig består av nervefibre. Hjernebroen er i utgangspunktet en "motorvei" som signaler fra kropp til hjerne passerer og impulser som går fra nervesenteret til kroppen. På stigende måter går broen av hjernen inn i midtveien.

Cerebellum har et mye bredere spekter av muligheter. Hjernens hjernefunksjoner er koordinering av kroppsbevegelser og opprettholdelse av balanse. Videre regulerer cerebellum ikke bare komplekse bevegelser, men bidrar også til tilpasning av muskel-skjelettsystemet i forskjellige lidelser.

For eksempel viste eksperimenter med bruk av et invertoskop (spesielle briller som omverder bildet av omverdenen) at det er funksjonene til hjernen som er ansvarlig for, ikke bare begynner personen å orientere seg i rommet, men ser også verden riktig.

Anatomisk gjentas cerebellum strukturen til de store halvkugler. Utenpå er dekket med et lag av grått materiale, under hvilket er en klynge av hvit.

Limbic system

Limbic system (fra latin-ordet limbus-kanten) kalles et sett med formasjoner som omkranser den øvre delen av stammen. Systemet omfatter olfaktoriske sentre, hypotalamus, hippocampus og retikulær formasjon.

Hovedfunksjonene til det limbiske systemet er tilpasning av organismen til endringer og regulering av følelser. Denne formasjonen bidrar til etableringen av varige minner gjennom foreninger mellom minne og sensoriske erfaringer. Den tette forbindelsen mellom olfaktorisk og følelsesmessige sentre fører til at luktene gir oss så sterke og klare minner.

Hvis du opplister hovedfunksjonene til limbic systemet, er det ansvarlig for følgende prosesser:

  1. Luktfølelse
  2. kommunikasjon
  3. Minne: kortsiktige og langsiktige
  4. Fredelig søvn
  5. Effektiviteten av avdelinger og organer
  6. Følelser og motivasjonskomponent
  7. Intellektuell aktivitet
  8. Endokrine og vegetative
  9. Delvis involvert i dannelsen av mat og seksuell instinkt

Vær så snill å hjelpe meg å forstå hvilke divisjoner som utgjør den menneskelige hjerne, hvordan hvitt og grått materiale er fordelt i sine divisjoner, hva er den biologiske betydningen av den sårbare strukturen i hjernebarken?

Spar tid og ikke se annonser med Knowledge Plus

Spar tid og ikke se annonser med Knowledge Plus

Svaret

Svaret er gitt

lexaclaire

Hjernen er et organ som regulerer og koordinerer alle vitale funksjoner i kroppen og styrer dens oppførsel. Hjernen er dekket av meninges med mange blodårer. Hjernen er delt inn i følgende seksjoner:
- forlengede marg
- bakre hjerne
- hjernen
- mellomliggende hjerne
- end hjernen
Det meste av det grå stoffet i hjernen ligger på overflaten av hjernen og hjernen, som danner sin cortex. Den mindre delen danner mange subkortiske kjerne omgitt av hvitt materiale.
Hvit materie okkuperer hele rommet mellom den grå saken av hjernebarken og de basale kjernene.
På grunn av strukturen øker området av cortex, til tross for det lille volumet av skallen.

Koble Knowledge Plus for å få tilgang til alle svarene. Raskt uten reklame og pauser!

Ikke gå glipp av det viktige - koble Knowledge Plus til å se svaret akkurat nå.

Se videoen for å få tilgang til svaret

Å nei!
Response Views er over

Koble Knowledge Plus for å få tilgang til alle svarene. Raskt uten reklame og pauser!

Ikke gå glipp av det viktige - koble Knowledge Plus til å se svaret akkurat nå.

Hvilke divisjoner er den menneskelige hjernen. hjernen

MENNESKELIG, organet som koordinerer og regulerer alle vitale funksjoner i kroppen og kontrollerer atferd. Alle våre tanker, følelser, opplevelser, ønsker og bevegelser er knyttet til hjernens arbeid, og hvis den ikke fungerer, går personen inn i en vegetativ tilstand: kapasiteten til handlinger, følelser eller reaksjoner på ytre påvirkninger går tapt. Denne artikkelen fokuserer på den menneskelige hjernen, mer kompleks og svært organisert enn hjernen til dyr. Imidlertid er det signifikante likheter i strukturen av den menneskelige hjerne og andre pattedyr, som de fleste vertebratarter.

Lyden oppfattes bare av personer under 20 år. Forklaringen er veldig enkel - når en person når sin avanserte alder, mister de evnen til å høre lydene av høyere toner, så bare personer under 20 år kan oppleve dem.

Ian Purkinje, grunnleggeren av moderne nevrovitenskap, oppdaget en interessant hallusinasjon i barndommen. Lukket øynene og lente seg mot solen, begynte han å bevege hånden frem og tilbake fra ansikt til sol. Etter noen få minutter ble det observert at forskjellige fargerike former som multipliserer og blir mer komplekse, kan ses.

HUMAN BRAIN er preget av en høy utvikling av de store hemisfærene; de utgjør mer enn to tredjedeler av sin masse og gir slike mentale funksjoner som å tenke, lære, minne. Andre store hjernekonstruksjoner er vist på dette tverrsnittet: cerebellum, medulla, pons og midbrain.

Sentralnervesystemet (CNS) består av hjerne og ryggmargen. Det er forbundet med ulike deler av kroppen ved perifere nerver - motor og sensorisk. Se også NERVOUS SYSTEM.

Denne stimuleringen skaper en kortslutning i hjernens visuelle cortex, celler begynner å antennes på en uforutsigbar måte, noe som fører til utseendet på imaginære bilder. Se på midtpunktet i svart og hvitt i minst 30 sekunder, så se på veggen og se et lyspunkt.

Se på papegøyens røde øyne til den er nummerert 20, og så se raskt på torget i den tomme cellen. Du bør se et uklart bilde av en grønnblå fugl. Hvis du gjør det samme, men med en grønn fugl, vises et bilde av en annen lilla fugl i buret.

Hjernen er en symmetrisk struktur, som de fleste andre deler av kroppen. Ved fødselen er vekten 0,3 kg, mens den i en voksen er ca. 1,5 kg. På ekstern undersøkelse av hjernen trekker to store halvkule som skjuler de dypere formasjonene oppmerksomhet. Overflaten på halvkulen er dekket med spor og konvolutter som øker overflaten av cortexen (ytre lag av hjernen). Bak hjernen er plassert, overflaten av den er tynnere kuttet. Under de store hemisfærene er hjernestammen, som går inn i ryggmargen. Sener forlater stammen og ryggmargen, langs hvilken informasjon strømmer fra indre og eksterne reseptorer til hjernen, og signaler til muskler og kjertler strømmer i motsatt retning. 12 par kraniale nerver beveger seg vekk fra hjernen.

Barndomsskader påvirker hvitt stoff

Det ble funnet at når det gjelder voksne som har opplevd voldelig barnemishandling, har nerveforbindelsene i hjerneområdet forbundet med følelser, oppmerksomhet og andre kognitive prosesser kritiske konsekvenser. Tidligere studier har vist at personer som lider av barndomsforsømmelse og misbruk, er utsatt for en reduksjon i hvitt stoff i forskjellige områder av hjernen. Hvit materie består av myelinaksoner, som er fremskrivninger av nerveceller som tillater elektriske impulser å bevege seg og overføre informasjon, mens myelin utskiller deler av disse cellene.

Inne i hjernen utmerker seg grå materie, som hovedsakelig består av legemet av nerveceller og danner cortexen og hvitt stoff - nervefibrene som danner ledende stier (kanaler) som forbinder ulike deler av hjernen, og danner også nerver som går utover sentralnervesystemet og går til ulike organer.

Hjernen og ryggmargen er beskyttet av bein tilfeller - skallen og ryggraden. Mellom stoffet i hjernen og de bonyveggene er tre skaller: det ytre - dura mater, det indre - det myke, og mellom dem - den tynne arachnoiden. Plassen mellom membranene er fylt med cerebrospinal (cerebrospinal) væske, som er lik i sammensetningen til blodplasma, produsert i intracerebrale hulrom (hjernens ventrikler) og sirkulerer i hjernen og ryggmargen, forsyner den med næringsstoffer og andre faktorer som er nødvendige for vital aktivitet.

Milin hjelper disse elektriske impulser til å strømme raskere ved å gi effektiv informasjonsoverføring. Volumet og strukturen av hvitt materiale er korrelert med menneskers evne til å lære, og denne delen av hjernen utvikler seg under tidlig modenhet, i motsetning til grått materiale.

Personer som ble misbrukt i barndommen hadde et tynnere lag myelin i en høy prosentandel av nervefibre. Forskerne bemerket også at unormal molekylær utvikling spesielt påvirker cellene som er involvert i produksjon og vedlikehold av myelin.

Blodforsyning til hjernen er primært tilveiebrakt av karoten arterier; i hjernen er de delt inn i store grener som går til sine ulike seksjoner. Selv om hjernevekten bare er 2,5% av kroppsvekten, får den hele tiden dag og natt 20% av blodet som sirkulerer i kroppen og dermed oksygen. Energireserverne i selve hjernen er ekstremt små, så det er ekstremt avhengig av oksygenforsyningen. Det er beskyttende mekanismer som kan støtte cerebral blodstrøm i tilfelle blødning eller skade. En funksjon av cerebral sirkulasjon er også tilstedeværelsen av såkalte. blod-hjerne barriere. Den består av flere membraner, som begrenser permeabiliteten til de vaskulære veggene og strømmen av mange forbindelser fra blodet inn i hjernens substans. Derfor utfører denne barriere beskyttende funksjoner. For eksempel trenger mange medisinske stoffer ikke gjennom det.

Også påvirket kommunikasjonen av viktige områder av hjernen. Forskerne la merke til at de berørte axonene var uvanlig tykke. Det antas at disse spesifikke forandringene kan påvirke forbindelsen mellom fremre cortex av halen, hjerneområdet involvert i behandling av følelser og kognitiv funksjon og tilhørende hjerneområder negativt. Disse tilknyttede områdene inkluderer amygdala, som spiller en nøkkelrolle i å regulere følelser, og kjernen hviler, som deltar i hjernens belønningssystem.

Dette kan forklare hvorfor mennesker som har blitt misbrukt i barnas prosess opplever forskjellige følelser og er utsatt for negative psykiske konsekvenser, samt misbruk av psykoaktive stoffer. Selvfølgelig hørte du at hjernen er hundre milliarder neuroner. Men hvor kom dette nummeret fra?

CNS-celler kalles nevroner; deres funksjon er informasjonsbehandling. I den menneskelige hjerne fra 5 til 20 milliarder nevroner. Strukturen i hjernen inkluderer også glialceller, det er omtrent 10 ganger mer enn nevroner. Glia fyller mellomrummet mellom nevronene, danner den støttende rammen av nervesvevet, og utfører også metabolske og andre funksjoner.

Neuroner er hovedbyggematerialet av noe nervesystem - murstein. Dette er en spesifikk celle, grener av en tregrene, i kontakt med de samme basene til nabostaten og danner et stort nettverk, som er vår hjerne, behandler miljøinformasjon, styrer våre handlinger og kontrollerer selvbevisste kroppsfunksjoner. Det er den nevrale hjernen som utfører ulike handlinger raskere og mer effektivt enn noen maskin. Gitt disse cellernes uunnværlige natur kan vi anta at forskere vet nøyaktig antall mål.

NERVOUS CELLS av hjernen overfører impulser fra axon av en celle til dendrit av en annen gjennom et meget smalt synaptisk klype; Denne overføringen skjer gjennom kjemiske nevrotransmittere.

Nevronen, som alle andre celler, er omgitt av en semipermeabel (plasma) membran. To typer prosesser går fra en cellekropp - dendriter og axoner. De fleste nevroner har mange forgreningsdendritter, men bare en axon. Dendriter er vanligvis svært korte, mens lengden på axonen varierer fra noen få centimeter til flere meter. Kroppen til nevronet inneholder kjernen og andre organeller, det samme som i andre celler i kroppen (se også CELL).

Ved hjelp av neurovitenskap lærebøker eller vitenskapelige tidsskrifter, vil du finne at det vanligvis er en god rund figur på 100 milliarder kroner. Det viser seg at den gjennomsnittlige menneskelige hjernen har rundt 86 milliarder nevroner, men de har ikke funnet 100 milliarder i noen av hjernene. Kanskje det kan vise seg å være 14 milliarder dollar. neuroner - ikke så mye en stor forskjell. Men det er bavianens hjerne eller halvparten av gorillas hjerne, så forskjellen er ikke så liten.

Pattedyr, som primater og hvaler, som delfiner, har mer hjerne enn et insekt, og preges av det som kan betraktes som proporsjonalt stort i mentale evner. Dermed er konklusjonen at hjernestørrelse er en god indikator på kognitiv evne. Regelen "mer betyr bedre" er imidlertid ødelagt ved å sammenligne ulike typer mennesker. For eksempel er hjernen til en ku større enn enhver hjerne av en ape, men kyr har like rimelige evner for de fleste primater.

Nerveimpulser. Overføringen av informasjon i hjernen, så vel som nervesystemet som helhet, utføres ved hjelp av nerveimpulser. De sprer seg i retning fra cellelegemet til den øvre delen av axonen, som kan forgrene seg, danner et sett av endinger i kontakt med andre nevroner gjennom en smal spalt, synapsen; Overføring av impulser gjennom synaps er formidlet av kjemiske stoffer - nevrotransmittere.

Det mest veltalende bevis på hva "ikke lenger betyr bedre" er justeringen av hjernen til mennesker og store pattedyr, som hvaler eller elefanter. Hvorfor ble derfor ikke folk fanget av ræv seks ganger størrelsen på den menneskelige hjerne?

Denne myten stammer fra Aristoteles tid, som i 335 f.Kr. Vår tidsalder skrev: "Av alle dyr er menneskets hjerne størst i forhold til kroppens størrelse." Ja, forholdet mellom den menneskelige hjerne og kroppen er enorm i forhold til for eksempel en elefant, men en enkel mus og til og med noen små fugler kan skryte av et slikt forhold. Dermed har forskere utviklet et mer komplekst evalueringssystem, kjent som encefaliseringsfaktor, som måler forholdet mellom hjernen og kroppsstørrelsen sammenlignet med andre dyr av tilsvarende størrelse.

En nerveimpuls oppstår vanligvis i dendriter - tynne forgreningsprosesser av en nevron som spesialiserer seg på å skaffe informasjon fra andre nevroner og overføre den til en neurons kropp. På dendriter og, i et mindre antall, er det tusenvis av synapser på cellekroppen; det er gjennom axonsynapsene, som bærer informasjon fra nervens kropp, overfører den til dendritene til andre nevroner.

I dette tilfellet er ikke bare det faktum at hjernevolumet øker med økende kroppsstørrelse, men også at hjernevolumet ikke nødvendigvis endres i forhold til økningen i kroppen. Denne menneskelige faktoren er den største sammenlignet med andre levende ting på vår planet.

Interessante fakta om den menneskelige hjerne. Hjernen er som en muskel - jo mer du trener, desto mer vokser den. Den raskeste hjernen utvikler seg fra 2 til 11 år. Regelmessig bønn reduserer pusten og normaliserer hjernens bølger, noe som er nyttig for selvhelbredelse av kroppen. Trofaste mennesker besøker 36% av legen sin. sjeldnere enn andre.

Enden av axonen, som danner den presynaptiske delen av synaps, inneholder små vesikler med en nevrotransmitter. Når impulsen når den presynaptiske membranen, frigjøres nevrotransmitteren fra vesiklen til det synaptiske spaltet. Enden av en akson inneholder bare en type neurotransmitter, ofte i kombinasjon med en eller flere typer neuromodulatorer (se under Brain Neurochemistry).

Jo mer utdannet en person, desto mindre sannsynlig er en hjernesykdom. Intellektuell aktivitet stimulerer veksten av overskytende vev, noe som kompenserer for indisposisjon. Å gjøre nye, uvanlige aktiviteter er den beste måten å utvikle hjernen på. Kommunisere med mennesker med høyere intelligens er også et godt verktøy for hjernens utvikling.

Verdens største hjernedonor er Mandatsky-ordningen for monastiske lærere. Om nitti tusen enheter av hjernen donerte vilkene til koner. Creighton Carvel var det mest unike fotografiske minnet: Han stirret bare på 6-kortsekvensen av brensel.

Nevrotransmitteren frigitt fra den akson-presynaptiske membranen binder til reseptorer på dendritene av postsynaptisk nevron. Hjernen bruker en rekke neurotransmittere, som hver er forbundet med sin spesielle reseptor.

Reseptorene på dendrittene er koblet til kanaler i en semi-permeabel postsynaptisk membran som styrer bevegelsen av ioner gjennom membranen. I hvile har nevronet et elektrisk potensial på 70 millivolt (hvilepotensial), mens membrans indre side er negativt ladet med hensyn til det ytre. Selv om det finnes forskjellige mediatorer, har de alle en stimulerende eller hemmende effekt på postsynaptisk nevron. Den stimulerende effekten oppnås ved å øke strømmen av visse ioner, hovedsakelig natrium og kalium, gjennom membranen. Som følge av dette reduseres den negative overflaten av den indre overflaten - depolarisering oppstår. Bremseffekten skjer hovedsakelig gjennom en forandring i kalium- og kloridstrømmen, som følge av at den negative overflaten av den indre overflaten blir større enn i hvile, og hyperpolarisering oppstår.

Vanligvis bruker vi 5-7% av livet vårt. ditt hjernepotensial. Det er vanskelig å engang forestille seg hvor mye alt ville vært gjort og ville ha blitt funnet av en mann hvis han brukte minst det andre. For hvem vi har slike reserver, har forskere ennå ikke kommet til konklusjonen. Når vi snakker om dysleksi, snakker vi om leseprosessen. Lesing er kognitiv oppførsel og behandles derfor av hjernen. Så når vi snakker om lesing, må vi snakke om noe relatert til hjernen.

Men hva er det? Nylig har stor oppmerksomhet og interesse blitt betalt til hvor grov den dyslektiske hjernen er og hvordan den fungerer. Følgende er en studie av den vitenskapelige tilnærmingen til dysleksi, basert på min kunnskap så langt. Hvis vi bruker hjernen som utgangspunkt, står vi overfor problemer som.

Nevonens funksjon er å integrere alle de påvirkninger som oppfattes gjennom synapsene på kropp og dendriter. Siden disse påvirkninger kan være excitatoriske eller inhibitoriske og ikke sammenfaller i tide, må nevronen beregne den totale effekten av synaptisk aktivitet som en funksjon av tiden. Hvis den excitatoriske effekten hersker over den hemmende og membranav depolariseringen overskrider terskelverdien, aktiveres en viss del av nevronens membran - i området av sin aksonbase (axon tubercle). Her, som et resultat av åpningen av kanaler for natrium og kaliumioner, oppstår et handlingspotensial (nerveimpuls).

Hjernen består av milliarder av nerveceller eller nevroner som interagerer med hverandre gjennom elektrokjemisk vei. Selv om hjernen fungerer som en autonom gjenstand, er det infrastruktur og delsystemer. Det er delt inn i venstre og høyre halvkule, som er forbundet med "meduloby". I de fleste mennesker er venstre side ansvarlig for oppfatningen og produksjonen av tale, og den høyre halvkule spiller en viktig rolle i den visuelle-romlige informasjonen. Hver halvkule er dekket med bark eller peeling med et hvitt stoff under den.

Cortex inneholder hovedsakelig kroppen av nerveceller. Hvit materie inneholder forbindelser. Celler i cortex begynner med dypere områder av cortexen under vekst før fødselen. Ikke alle cellene når deres endelige destinasjon. De kan grupperes i klynger av celler underveis. Disse gruppene av avvikende celler kalles epitoper.

Dette potensialet strekker seg videre langs axonen til sin ende med en hastighet på fra 0,1 m / s til 100 m / s (jo tykkere aksonet er, desto høyere er hastigheten på ledningen). Når handlingspotensialet når slutten av axonen, aktiveres en annen type ionkanaler, avhengig av potensiell forskjell, kalsiumkanaler. Ifølge dem går kalsium inn i axonen, som fører til mobilisering av vesikler med nevrotransmitteren, som nærmer seg presynaptisk membran, fusjonerer med det og frigjør nevrotransmitteren i synapsen.

Barken på hver halvkule er delt inn i fire funksjonelle områder: frontal, parietal, temporal og occipital. Alle disse områdene er involvert i en kompleks leseprosess, spesielt den tidlige og occipitale regionen, samt den formidlede regionen mellom dem, parietalloben.

Nerveceller interagerer med hverandre elektrokemisk. Denne elektriske aktiviteten kan måles utenfor hjernen ved hjelp av et elektroensfalogram og metoder som er avledet fra det. Hva er en spesialist om dysleksisk hjerne? Til tross for omfattende vitenskapelig forskning er det fortsatt flere spørsmål enn svar. Nylige studier har gitt litt lys på dette emnet, men det er viktig å skille mellom svar relatert til strukturen, anatomien til hjernen og de som er relatert til dens fysiologi eller funksjon.

Myelin og glialceller. Mange axoner er dekket med myelinskjede, som dannes av gjentatt snevret membran av glialceller. Myelin består hovedsakelig av lipider, noe som gir et karakteristisk utseende til den hvite delen av hjernen og ryggmargen. Takket være myelinskjeden øker hastigheten til å utføre handlingspotensialet langs axonen, siden ioner kan bevege seg gjennom axonmembranen bare på steder som ikke er dekket av myelin - den såkalte avskjæringer Ranvier. Mellom avlytninger gjennomføres impulser langs myelinskjeden som gjennom en elektrisk kabel. Siden åpningen av kanalen og passasjen av ioner gjennom det tar litt tid, eliminerer den konstante åpningen av kanalene og begrensningen av deres omfang til små membranområder som ikke er dekket av myelin akselereringen av axonene ca. 10 ganger.

Hva er de anatomiske egenskapene til dysleksisk hjerne? Ektopiske celler ble funnet i hjernen til alle dysleksikere som ble undersøkt under Harvard Universitys anatomiske forskningsprogram. De ble identifisert mange steder, men spesielt i venstre occipital og frontal lober, det vil si i områder som er viktige for tungen.

Andre forskere har vist at det tidsmessige feltet representerer symmetri i den dyslektiske hjernen, som ikke forekom i hjernen av de fleste nondisleksjoner. I den dyslektiske hjernen er cellene i det store cellesystemet mindre enn vanlig. Det ser ut til at de to hovedsystemene, den store cellen og den lille cellen, er involvert i visuell oppfatning. Det lille cellesystemet var tilpasset visuell oppfatning av former og farger, mens den store cellen var for oppfatning av bevegelse. Et system med store celler spiller en viktig rolle i den raske endringen av skrivebeskyttede visninger.

Bare en del av glialceller er involvert i dannelsen av myelinskede av nerver (Schwann-celler) eller nervekanaler (oligodendrocytter). Mye flere tallrike glialceller (astrocytter, mikrogliocytter) utfører andre funksjoner: de danner bærende skjelett i nervesystemet, sørger for dets metabolske behov og gjenoppretter fra skader og infeksjoner.

HVORDAN BRENNEN VIRKER

Tenk på et enkelt eksempel. Hva skjer når vi tar en blyant på bordet? Lyset som reflekteres fra blyanten fokuserer i øyet med linsen og er rettet mot netthinnen, hvor bildet av blyanten vises. det oppfattes av de tilsvarende celler, hvorfra signalet går til hjernens sentrale sensoriske transmisjonskjerner, som ligger i thalamus (visuelt tuberkel), hovedsakelig i den delen som kalles den laterale genikulære kroppen. Det er aktivert mange neuroner som reagerer på fordelingen av lys og mørke. Axoner av nevroner i den laterale vevede kroppen går til den primære visuelle cortexen, lokalisert i den okkipitale lobe av de store halvkugler. Impulser som kommer fra thalamus til denne delen av cortexen, forvandles til en kompleks sekvens av utslipp av kortikale nevroner, hvorav noen reagerer på grensen mellom blyanten og bordet, andre til hjørnene i blyantbildet etc. Fra den primære visuelle cortex kommer informasjon på axonene inn i den associative visuelle cortexen, der mønstergenkjenning finner sted, i dette tilfellet en blyant. Anerkjennelse i denne delen av cortex er basert på tidligere akkumulert kunnskap om de eksterne omrissene av objekter.

Bevegelsesplanlegging (dvs. å ta en blyant) forekommer trolig i cortexen av de frontale lobber i hjernehalvene. I samme område av cortex er motorneuroner plassert som gir kommandoer til musklene i hånd og fingre. Tilgangen av hånden til blyanten styres av det visuelle systemet og interoreceptorene som oppfatter muskel og leddsposisjonen, hvor informasjonen kommer inn i sentralnervesystemet. Når vi tar en blyant i hånden, forteller reseptorene ved fingertuppene, som oppfatter trykk, om fingrene holder blyanten godt og hva innsatsen bør være å holde den. Hvis vi ønsker å skrive navnet vårt i blyant, må vi aktivere annen informasjon lagret i hjernen som gir denne mer komplekse bevegelsen, og visuell kontroll vil bidra til å øke nøyaktigheten.

I eksemplet ovenfor kan det ses at utførelse av en ganske enkel handling innebærer omfattende områder av hjernen som strekker seg fra cortex til de subkortiske områdene. Med mer komplekse atferd knyttet til tale eller tenkning aktiveres andre nevrale kretser som dekker enda mer omfattende områder av hjernen.

HOVEDE DELER AV BRAINEN

Hjernen kan deles inn i tre hoveddeler: forebrain, hjernestamme og cerebellum. I forebrain blir de cerebrale hemisfærene, talamus, hypothalamus og hypofysen (en av de viktigste nevendokrine kjertlene) utsatt. Hjernestammen består av medulla oblongata, pons (pons) og midbrain.

Den hjernehalvfrekvensen er den største delen av hjernen, og utgjør ca. 70% av vekten hos voksne. Vanligvis er hemisfærene symmetriske. De er sammenkoblet med et massivt bunke av axoner (corpus callosum), som gir informasjonsutveksling.

Hver halvkule består av fire lober: frontal, parietal, temporal og occipital. Cortex av frontalblobene inneholder sentre som regulerer lokomotorisk aktivitet, så vel som sannsynligvis planleggings- og fremsynsenter. I barken av parietallobene, plassert bak fronten, er det soner av kroppslige opplevelser, inkludert følelse av berøring og felles og muskulær følelse. Sideveis til parietalloben grenser den tidsmessige, hvor den primære høringsborken befinner seg, samt talesentrene og andre høyere funksjoner. Baksiden av hjernen okkuperer den occipital lobe som ligger over cerebellumet; barken inneholder soner av visuelle følelser.

Cortexområder som ikke er direkte relatert til regulering av bevegelser eller analyse av sensorisk informasjon, refereres til som associativ cortex. I disse spesialiserte sonene dannes associative lenker mellom ulike områder og deler av hjernen, og informasjonen som kommer fra dem er integrert. Den associative cortex gir slike komplekse funksjoner som læring, minne, tale og tenkning.

KORA av BRAIN dekker overflaten av de store halvkugler med sine mange furuer og konvolutter, som følge av at cortexområdet øker betydelig. Det er assosierende soner i cortex, samt sensoriske og motoriske cortex - områder der nøytroner er konsentrert, som innervate ulike deler av kroppen.

Subkortiske strukturer. Under cortex ligger en rekke viktige hjernestrukturer, eller kjerner, som er klynger av nevroner. Disse inkluderer thalamus, basal ganglia og hypothalamus. Thalamus er den viktigste sensoriske transmitterende kjernen; Han mottar informasjon fra sansene, og videresender den videre til de aktuelle delene av sensorisk cortex. Det er også ikke-spesifikke soner som er forbundet med nesten hele cortexen, og sannsynligvis sørger for prosessene for aktivering og opprettholder våkenhet og oppmerksomhet. Den basale ganglia er et sett med kjerner (det såkalte skallet, en blek ball og den caudate kjernen) som er involvert i reguleringen av koordinerte bevegelser (start og stopp dem).

Hypothalamus er et lite område i hjernebunnen som ligger under thalamus. Rik i blodet, er hypothalamus et viktig senter som kontrollerer kroppens homeostatiske funksjoner. Det produserer stoffer som regulerer syntese og frigjøring av hypofysehormoner (se også HYPOPHYSIS). I hypothalamus er mange kjerne som utfører spesifikke funksjoner, for eksempel regulering av vannmetabolisme, fordelingen av lagret fett, kroppstemperatur, seksuell oppførsel, søvn og våkenhet.

Hjernestammen ligger i bunnen av skallen. Den forbinder ryggmargen med forgrunnen og består av medulla oblongata, pons, midt og diencephalon.

Gjennom midten og mellomhjernen, så vel som gjennom hele kofferten, passerer motorveiene som fører til ryggmargen, samt noen sensitive veier fra ryggmargen til de overliggende delene av hjernen. Under midbrainen er en bro forbundet med nervefibre med cerebellum. Den nederste delen av stammen - medulla - passerer direkte inn i ryggmargen. I medulla oblongata er sentre lokalisert som regulerer hjertets aktivitet og respirasjon, avhengig av ytre omstendigheter, og kontrollerer også blodtrykk, mage og tarmmotilitet.

På nivået på stammen krysser stiene som forbinder hver hjernehalvdel med hjernen. Derfor styrer hver halvkule motsatt side av kroppen og er forbundet med motsatt halvkule.

Hjernen er lokalisert under oksipitale lobes av de store halvkugler. Gjennom broens veier er den forbundet med de overliggende delene av hjernen. Hjernehinnen regulerer de subtile automatiske bevegelsene, koordinerer aktiviteten til forskjellige muskelgrupper når de utfører stereotypiske atferdshandlinger; han kontrollerer også posisjonen til hode, torso og lemmer, dvs. involvert i å opprettholde balanse. Ifølge de nyeste dataene spiller hjernebarnet en svært viktig rolle i dannelsen av motoriske ferdigheter, og bidrar til å huske sekvensen av bevegelser.

Andre systemer. Det limbiske systemet er et bredt nettverk av sammenhengende hjernegrupper som regulerer emosjonelle tilstander, samt gir læring og minne. Kjernene som danner det limbiske systemet inkluderer amygdalaen og hippocampusen (inkludert i temporal loben), så vel som hypotalamus og den såkalte kjernen. gjennomsiktig septum (lokalisert i hjernens subkortiske områder).

Den retikulære formasjonen er et nettverk av nevroner som strekker seg over hele stammen til talamus og videre forbundet med omfattende områder av cortex. Det deltar i reguleringen av søvn og våkenhet, opprettholder den aktive tilstanden i cortexen og bidrar til fokus på oppmerksomhet på enkelte objekter.

BRAIN ELECTRIC ACTIVITY

Ved hjelp av elektroder plassert på overflaten av hodet eller introdusert i hjernens substans, er det mulig å fikse den elektriske aktiviteten til hjernen på grunn av utslippene av cellene. Innspillingen av hjernens elektriske aktivitet med elektroder på overflaten av hodet kalles et elektroencefalogram (EEG). Det tillater ikke å registrere utslipp av en enkelt neuron. Bare som følge av den synkroniserte aktiviteten til tusenvis eller millioner av nevroner, vises merkbare svingninger (bølger) på den registrerte kurven.


ELECTRIC ACTIVITY av hjernen er registrert ved hjelp av en elektroencefalograf. De resulterende kurver - elektroencefalogrammer (EEG) - kan indikere avslappet våkenhet (alfa bølger), aktiv våkenhet (beta-bølger), søvn (deltabølger), epilepsi, eller et svar på visse stimuli (fremkalte potensialer).

Ved konstant registrering på EEG, avsløres sykliske endringer som gjenspeiler det totale aktivitetsnivået til den enkelte. I tilstanden med aktiv våknehet, fanger EEG lav-amplitude ikke-rytmiske beta-bølger. I en tilstand av avslappet våkenhet med lukkede øyne dominerer alfa bølger med en frekvens på 7-12 sykluser per sekund. Forekomsten av søvn er indikert ved utseendet av langsomt bølger med høy amplitude (deltabølger). I perioder med drømmer vises beta-bølger på EEG, og på grunnlag av EEG kan et falskt inntrykk opprettes slik at personen er våken (dermed begrepet "paradoksal søvn"). Drømmer blir ofte ledsaget av raske øyebevegelser (med lukkede øyelokk). Derfor kalles drømmende også søvn med raske øyebevegelser (se også SLEEP). EEG lar deg diagnostisere noen sykdommer i hjernen, spesielt epilepsi (se EPILEPSY).

Hvis du registrerer den elektriske aktiviteten til hjernen under virkningen av en bestemt stimulus (visuell, auditiv eller taktil), kan du identifisere den såkalte. fremkalte potensialer - synkronutladninger av en bestemt gruppe neuroner som oppstår som svar på en bestemt ekstern stimulans. Studien av fremkalte potensialer gjorde det mulig å klargjøre lokaliseringen av hjernefunksjoner, spesielt for å knytte talefunksjonen med bestemte områder av de tidlige og frontale lobene. Denne studien bidrar også til å vurdere tilstanden til sensoriske systemer hos pasienter med nedsatt følsomhet.

De viktigste nevrotransmitterene i hjernen er acetylkolin, norepinefrin, serotonin, dopamin, glutamat, gamma-aminosmørsyre (GABA), endorfiner og enkefaliner. I tillegg til disse kjente stoffene, fungerer et stort antall andre som ennå ikke er studert, sannsynligvis i hjernen. Noen nevrotransmittere virker bare i visse områder av hjernen. Dermed er endorfiner og enkefaliner bare funnet i veiene som utfører smerteimpulser. Andre mediatorer, som glutamat eller GABA, er mer distribuert.

Virkningen av nevrotransmittere. Som allerede nevnt, påvirker nevrotransmittere som virker på den postsynaptiske membranen sin ledningsevne for ioner. Ofte skjer dette ved aktivering i postsynaptisk nevron av det andre "mediator" -systemet, for eksempel cyklisk adenosinmonofosfat (cAMP). Virkningen av nevrotransmittere kan modifiseres under påvirkning av en annen klasse av neurokjemiske substanser - peptid-neuromodulatorer. Utgitt av presynaptisk membran samtidig med mediatoren har de evnen til å forbedre eller på annen måte endre effekten av mediatorene på den postsynaptiske membranen.

Det nylig oppdagede endorfin-enkefalinsystemet er viktig. Enkephalin og endorfiner er små peptider som hemmer ledelsen av smerteimpulser ved binding til reseptorer i CNS, inkludert i de høyere sonene i cortex. Denne familien av nevrotransmittere undertrykker den subjektive oppfatningen av smerte.

Psykoaktive stoffer er stoffer som spesifikt kan binde seg til bestemte reseptorer i hjernen og forårsake atferdsendringer. Identifiserte flere mekanismer av deres handling. Noen påvirker syntese av nevrotransmittere, andre - ved akkumulering og frigjøring fra synaptiske vesikler (for eksempel amfetamin forårsaker rask frigjøring av norepinefrin). Den tredje mekanismen er å binde til reseptorer og etterligne virkningen av en naturlig nevrotransmitter, for eksempel forklares effekten av LSD (lysergsyre dietylamid) ved sin evne til å binde seg til serotoninreceptorer. Den fjerde type medikamentvirkning er reseptorblokkering, dvs. antagonisme med nevrotransmittere. Slike allment brukte antipsykotika som fenotiaziner (for eksempel klorpromazin eller aminazin) blokkerer dopaminreseptorer og derved reduserer effekten av dopamin på postsynaptiske nevroner. Endelig er den siste vanlige virkemekanismen hemming av inaktivering av nevrotransmitter (mange pesticider hindrer acetylkolin fra inaktivering).

Det har lenge vært kjent at morfin (et renset opiumvalmeprodukt) ikke bare har en utbredt analgetisk (analgetisk) effekt, men også evnen til å forårsake eufori. Det er derfor det brukes som et stoff. Virkningen av morfin er forbundet med dets evne til å binde til reseptorer på det humane endorfin-enkefalinsystemet (se også DRUG). Dette er bare ett av mange eksempler på det faktum at et kjemisk stoff med en annen biologisk opprinnelse (i dette tilfellet av planteopprinnelse) er i stand til å påvirke hjernen hos dyr og mennesker, interagerer med bestemte neurotransmittersystemer. Et annet godt kjent eksempel er curare, avledet fra en tropisk plante og i stand til å blokkere acetylkolinreceptorer. Indianere i Sør-Amerika fettet curare arrowheads, ved hjelp av sin lammende effekt assosiert med blokkaden av nevromuskulær overføring.

Hjernforskning er vanskelig for to hovedårsaker. For det første kan hjernen, trygt beskyttet av skallen, ikke nås direkte. For det andre regenererer ikke nevronene i hjernen, noe som kan føre til irreversibel skade.

Til tross for disse vanskelighetene har hjerneforskning og noen former for behandling (primært nevrokirurgisk inngrep) vært kjent siden antikken. Arkeologiske funn viser at allerede i antikken sprakk mannen kranen for å få tilgang til hjernen. Spesielt intensiv hjerneforskning ble utført i perioder med krig, da det var mulig å observere en rekke hodeskader.

Hjerneskade som følge av skade på forsiden eller skade som oppstår i fredstid er en slags eksperiment som ødelegger bestemte deler av hjernen. Siden dette er den eneste mulige formen for et "eksperiment" på den menneskelige hjerne, var en annen viktig metode for forskning eksperimenter på laboratoriedyr. Å observere atferdsmessige eller fysiologiske konsekvenser av skade på en bestemt hjernestruktur, kan dømme sin funksjon.

Den elektriske aktiviteten til hjernen i eksperimentelle dyr registreres ved hjelp av elektroder plassert på overflaten av hodet eller hjernen eller introdusert i hjernens substans. Det er således mulig å bestemme aktiviteten til små grupper av nevroner eller individuelle nevroner, samt å identifisere endringer i ioniske strømninger over membranen. Ved hjelp av en stereotaktisk enhet som lar deg gå inn i elektroden på et bestemt punkt i hjernen, undersøkes de utilgjengelige dybdeseksjonene.

En annen tilnærming er å fjerne små områder av levende hjernevev, hvoretter dets eksistens opprettholdes som en skive plassert i et næringsmedium, eller cellene skilles og studeres i cellekulturer. I det første tilfellet kan du utforske samspillet mellom nevroner, i det andre - aktiviteten til individuelle celler.

Når man studerer den elektriske aktiviteten til individuelle nevroner eller deres grupper i forskjellige områder av hjernen, blir den opprinnelige aktiviteten vanligvis registrert først, da er effekten av en bestemt effekt på cellens funksjon bestemt. Ifølge en annen metode påføres en elektrisk impuls gjennom den implanterte elektroden for kunstig å aktivere nærmeste nevroner. Så du kan studere effektene av visse områder av hjernen på sine andre områder. Denne metoden for elektrisk stimulering var nyttig i studien av stammeaktiverende systemer som passerer gjennom midbrainen; Det brukes også når man prøver å forstå hvordan prosessene for læring og minne finner sted på synaptisk nivå.

For hundre år siden ble det klart at funksjonene til venstre og høyre halvkule er forskjellige. En fransk kirurg P. Brock, som ser på pasienter med cerebrovaskulær ulykke (slag), fant at bare pasienter med skade på venstre halvkule led av taleforstyrrelser. Videre studier av spesialiseringen av hemisfærene ble videreført ved hjelp av andre metoder, for eksempel EEG-opptak og fremkalte potensialer.

I de senere år har komplekse teknologier blitt brukt til å skaffe bilder (visualiseringer) av hjernen. Dermed har computertomografi (CT) revolusjonert klinisk nevrologi, slik at det in vivo detaljerte (lagdelte) bildet av hjernestrukturer kan oppnås. En annen bildebehandling - positronemissionstomografi (PET) - gir et bilde av hjernens metabolske aktivitet. I dette tilfellet blir en kortvarig radioisotop innført i en person som akkumuleres i ulike deler av hjernen, og jo mer, jo høyere er deres metabolske aktivitet. Med hjelp av PET ble det også vist at talfunksjonene til flertallet av de undersøkte er knyttet til venstre halvkule. Siden hjernen jobber med et stort antall parallelle strukturer, gir PET slik informasjon om hjernefunksjoner som ikke kan oppnås med enkelte elektroder.

Som regel utføres hjerneforskning ved hjelp av en kombinasjon av metoder. For eksempel brukte den amerikanske neurobiologen R. Sperri, med ansatte, som en behandlingsprosedyre for å kutte corpus callosum (bunt av axoner som forbinder begge halvkule) hos noen pasienter med epilepsi. Deretter ble i disse pasientene med en "splittet" hjerne undersøkt hemispherisk spesialisering. Det ble funnet at for tal og andre logiske og analytiske funksjoner er den dominerende dominante (vanligvis venstre) halvkule ansvarlig, mens den ikke-dominerende halvkule analyserer de romlige temporale parametrene i det ytre miljø. Så er den aktivert når vi hører på musikk. Et mosaikkbilde av hjernevirksomhet antyder at det er mange spesialiserte områder innen cortex og subcortical strukturer; Samtidig aktivitet av disse områdene bekrefter hjernekonceptet som en databehandling med parallell databehandling.

Med fremkomsten av nye forskningsmetoder vil ideer om hjernefunksjoner sannsynligvis endres. Bruken av enheter som gjør at vi kan få et "kart" av metabolsk aktivitet i ulike deler av hjernen, samt bruk av molekylære genetiske tilnærminger, bør utdype vår kunnskap om prosessene som skjer i hjernen. Se også nevropsykologi.

I forskjellige typer vertebrater er hjernen bemerkelsesverdig lik. Hvis vi gjør sammenligninger på nivået av nevroner, finner vi en tydelig likhet med slike egenskaper som nevrotransmittere som brukes, fluktuasjoner i ionkoncentrasjoner, celletyper og fysiologiske funksjoner. Fundamentelle forskjeller er kun avslørt når sammenlignet med hvirvelløse dyr. Invertebrate nevroner er mye større; ofte er de koblet til hverandre ikke av kjemikalier, men av elektriske synapser, som sjelden finnes i den menneskelige hjerne. I nervesystemet hos hvirvelløse dyr oppdages noen nevrotransmittere som ikke er karakteristiske for vertebrater.

Blant vertebrater relaterer forskjellene i hjernens struktur hovedsakelig til forholdet mellom dets individuelle strukturer. Ved å vurdere likheter og forskjeller i hjernen til fisk, amfibier, reptiler, fugler, pattedyr (inkludert mennesker), kan flere generelle mønstre utledes. Først har alle disse dyrene samme struktur og funksjoner som nevroner. For det andre er strukturen og funksjonene i ryggmargen og hjernestammen svært lik. For det tredje er utviklingen av pattedyr ledsaget av en markant økning i kortikale strukturer som når maksimal utvikling i primater. I amfibier utgjør cortexen bare en liten del av hjernen, mens det i mennesker er den dominerende strukturen. Det antas imidlertid at prinsippene for hjernens funksjon i alle vertebrater er nesten det samme. Forskjellene bestemmes av antall interneuronforbindelser og samspill, som er jo høyere, jo mer kompleks er hjernen.

Hjernen i kroppen vår er en svært viktig og integrert del av nervesystemet. Denne systemstrukturen er innelukket i kranialhulen. Men hjernen kan ikke betraktes som noe monolitisk, den består av ulike organer. Alle disse organene er samlet i skallen og representerer totaliteten av det vi kaller hjernen. La oss ta en nærmere titt på hva hjernen vår består av.

Stor hjerne. Denne hjernen er den mest volumetriske delen av hele hjernen vår. Er engasjert i denne kroppen, nesten hele kranialhulen. Komponentene i den store hjernen er to halvdeler. Disse halvdelene kalles cerebrale hemisfærer og er skilt av en spalt som løper langs hele hjernen. Roland (sylvium) fur deler hver halvkule fra siden. For å være ekstremt nøyaktig, viser det seg at den store hjernen ikke er delt inn i to halvdeler, men i fire deler. Disse delene kalles hjernebobler. Andelen i hjernen har også sin divisjon og følgelig navnene. Presentert lobes av den store hjernen - parietal, frontal, occipital og temporal. Men, i tillegg til at den store hjernen har fire divisjoner, består den av flere lag. Lagene i den store hjernen er representert av:

Grå materie. Dette - direkte, den såkalte hjernebarken (hjernen). Dette ytre laget er dannet av nerveceller (kroppene av nevroner).

Hvit materie. Det er en hjernen substans, av sin natur, som er grunnlaget for alle andre hjernevev. Det meste av det hvite stoffet består av prosesser av nevroner eller dendriter.

Corpus callosum. Dette er kroppen til den store hjernen, som ligger mellom de to tidligere nevnte hemisfærene (venstre og høyre). Den corpus callosum består av ulike kanaler av en nervøs natur.

Ventrikulær hjerne. Ventrikkene er sammenhengende hulrom. Det er fire slike hulrom. Gjennom hjernens ventrikler, transitt av cerebrospinalvæske.

Lillehjernen. Det er en liten kropp. Hjernen er lokalisert umiddelbart under den occipital delen av hjernen. Den funksjonelle belastningen av cerebellum er å opprettholde ligevægtsposisjonen i kroppen vår. Det er cerebellum som koordinerer arbeidet i hele kroppens kroppssystem.

Brain bridge. Dette er et hjernenorg som er ansvarlig for overføring av nerveimpulser som sikrer funksjonen til motorens og sensoriske funksjoner i kroppen vår. Faktisk er det senteret. Hjernebroen ligger foran cerebellumet, rett under oksipitalt seksjon.

Medulla oblongata. Dette organet er som en videreføring av broen (cerebral). Den særegne medulla oblongata er at den i kontakt med ryggmargen i løpet av sin plassering. Enkelt sagt, går det inn i det. Medulla oblongata utfører en rekke ekstremt viktige funksjoner for kroppen vår. Det regulerer ufrivillige funksjoner (respiratorisk senter), reguleringen bestemmer frekvensen av pusten vår. Regulerer kompresjon og utvidelse av blodkar (vasomotorisk senter), bestemmer arbeidet til det emetiske senteret.

Funksjonene som hjernen utfører er ekstremt viktig for hele kroppen. Derfor er vår hjerne pålidelig beskyttet av kraniet (sterk benstruktur). Men, i tillegg til at hjernen er beskyttet av skallenes skall, er også tre skall inkludert i forsvaret. Disse skallene har navn - arachnoid, hardt og mykt. Funksjonen av disse membranene er å beskytte hjernen mot direkte kontakt med de bony strukturer av skallen. De nevnte ventriklene i hjernen produserer cerebrospinalvæske. Dette væsken er en naturlig støtdempere for hjernen. (ekstremt viktig i tilfelle et slag mot hodet). Hjernen er også preget av det faktum at det er en ganske energiintensiv struktur av kroppen vår. Om lag tjue prosent av all kroppsenergi, forbruker den hjernen.

Du Liker Om Epilepsi